From 1 - 10 / 31
  • Carbon Capture and Storage (CCS) is a technique for mitigating anthropogenic climate change by separating CO2 from industrial flue gas, transporting it to and storing it in a subsurface geological storage reservoir. The low-salinity (TDS<3 000 mg/L) Jurassic sandstone formations in Australia's Surat Basin have been identified as a potential reservoir system for geological CO2 sequestration. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during geological sequestration in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise potential CO2-water-rock reaction pathways, to assess potential impacts of CCS on groundwater chemistry, and to identify geochemical tracers of inter- and intra-formational CO2 migration during geological sequestration within the Jurassic sandstones. Mineralogy and physical properties of the prospective reservoir are characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4. Representative samples are reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures to simulate conditions during carbon sequestration in the Jurassic sandstones. Results show the low formation water salinity, temperature, and mineralization in the reservoirs yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix result in very low mineral trapping capacity within the footprint of the supercritical CO2 (scCO2) plume. Though alkalinity buffers formation water pH under elevated CO2 pressure, the acidic pH significantly enhances mineral dissolution in reactors with heterogeneous Hutton and Boxvale Sandstone samples. Smaller TDS changes are observed for samples of the mature Precipice Sandstone than for the other formations. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.704845 - 0.706600) in batch reactors indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition in all formations during carbon sequestration. Slightly higher Sr isotope ratios in felsic samples than in calcitic samples, and dissolved Si concentrations in mature Precipice Sandstone reactors show detrital silicate dissolution to be an ancillary process. Batch reactor degassing at the end of the incubation period was simulated to assess geochemical changes in formation waters during transport away from a scCO2 plume. Model results suggest geological sequestration in the Jurassic sandstone formations would increase regional groundwater alkalinity and redistribute carbonate minerals outside the scCO2 footprint, but is unlikely to result in net mineral trapping of CO2. Several elements are mobilised in concentrations greater than found in regional groundwater, making them viable tracers of CO2 migration. Most notable is cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy. Experimental results indicate manganese and cadmium concentrations may locally exceed drinking water quality guidelines, but further modelling of intra aquifer mixing is required to quantify the potential risk to regional groundwaters from trace element mobilisation.

  • Brumbys 1 was an appraisal well drilled and cored through Brumbys Fault at the CO2CRC Otway International Test Centre in 2018. The Otway Project is located in South West Victoria, on private farming property approximately 35 km southeast of Warrnambool and approximately 10 km northwest of the town of Peterborough. Total measured depth was 126.6 m (80 degrees). Sonic drilling enabled excellent core recovery and the borehole was completed as a groundwater monitoring well. Brumbys 1 cores through the upper Hesse Clay, Port Campbell Limestone and extends into the Gellibrand Marl. This dataset compiles the extensive analysis undertaken on the core. Analysis includes: Core log; Foram Analysis; Paleodepth; % Carbonate (CaCO3); X-Ray Fluorescence Spectrometry (XRF); Inductively Coupled Plasma Mass Spectrometry (ICP-MS); X-Ray Diffraction (XRD); Grain Size; Density; Surface Area Analysis (SAA); Gamma. Samples were taken at approximately 1-2 m intervals.

  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>

  • <b>Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <b>Legacy service Retired 29/11/2022 IMPORTANT NOTICE: </b>This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <b>Legacy service retired 29/11/2022 IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <b> Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.

  • This report presents the results of an elemental and carbon and oxygen isotope chemostratigraphy study on three historic wells; Kidson-1, Willara-1 and Samphire Marsh-1, from the southern Canning Basin, Western Australia. The objective of this study was to correlate the Early to Middle Ordovician sections of the three wells to each other and to wells with existing elemental and carbonate carbon isotope chemostratigraphy data from the Broome Platform, Kidson and Willara sub-basins, and the recently drilled and fully cored stratigraphic Waukarlycarly 1 well from the Waukarlycarly Embayment.

  • A comprehensive compilation of rock, regolith and groundwater geochemistry across the Curnamona Province and overlying basins. This product is part of the Curnamona Geochemistry module of GA's Exploring for the Future program, which is seeking to understand geochemical baselines within the Curnamona Province to support mineral exploration under cover. Data is sourced from GA, CSIRO and state databases, and run through a quality control process to address common database issues (such as unit errors). The data has been separated by sample type and migrated into a standard data structure to make the data internally consistent. A central source for cleaned geochemical data in the same data format is a valuable resource for further research and exploration in the region.